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Stability analysis of flame fronts: Dynamical systems approach in the complex plane

Oleg Kupervasser, Zeev Olami, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
(Received 20 August 1998

We consider flame front propagation in channel geometries. The steady-state solution in this problem is
space dependent and therefore the linear stability analysis is described by a partial integro-differential equation
with a space-dependent coefficient. Accordingly, it involves complicated eigenfunctions. We show that the
analysis can be performed using a finite-order dynamical system in terms of the dynamics of singularities in the
complex plane, yielding a detailed understanding of the physics of the eigenfunctions and eigenvalues.
[S1063-651%99)01902-9

PACS numbes): 05.40.Ca, 47.27i

I. INTRODUCTION graph of a flame front propagating in this channel is defined
ash(x,t) with 0<x<L. A model that pertains to the propa-

In this paper we discuss the stability of steady flamegation of this flame front was proposed|[if]. After appro-
fronts in channel geometry. Traditionalli{t—3] one studies priate rescalings it takes the form
stability by considering the linear operator that is obtained by
linearizing the equations of motion around the steady solu- Jh(x,t) 1
tion. The eigenfunctions obtained atelocalizedand in cer- a2
tain cases are not easy to interpret. In the case of flame fronts
the steady-state solution is space dependent and therefore there v is a parameter. The functionglh(x,t)] is the Hil-
eigenfunctions are very different from simple Fourier modesbert transform that is conveniently defined in terms of the
We show in this paper that a good understanding of thepatial Fourier transform
nature of the eigenspectrum and eigenmodes can be obtained

dh(x,t)
X

2 9Ph(x,t)
v 2
ax

+H{h(x,t)}+1, (1)

by doing almost the opposite of traditional stability analysis, N BT

i.e., studying thdocalized dynamics of singularities in the h(x,t)= ﬂoel “h(k,Hdk, @
complex plane. By reducing the stability analysis to a study

of a finite-dimensional dynamical system one can gain con- CLIE

siderable intuitive understanding of the nature of the stability '[h(k.O]= KAk D). ©
problem. This functional represents the Darrius-Landau instability and

The analysis is based on the understanding that for & the phsyical instability term. The first term in Ed) has a
given channel width. the steady-state solution for the flame geometric origin and it stems from a small tilt in the flame
front is given in terms oN(L) poles that are organized on a front with respect to the direction of propagation. The second
line parallel to the imaginary axig4]. The stability of this  term is the dissipative contribution that acts to reduce high
solution can then be considered in two steps. In the first steyrinkling in the flame front. Rescaling further according to
we examine the response of this sefNflL) poles to pertur-  x_, g=27x/L, the new equation of motion fon(6,t) is

bations in their positions. This procedure yields an importantewritten conveniently in terms ofu(8,t)=dh(,t)/6
part of the stability spectrum. In the second step we examin -8

general perturbations, which can also be described by the
addition of extra poles to the system Bif(L) poles. The au(6,t) u(e,t) u(e,t) v d2u(e,t)

response to these perturbations gives us the rest of the sta-— 5 = 7| 2 90 L2 062 + [|{U(9't)}-
bility spectrum; the combinations of these two steps rational- %)
izes all the qualitative features found by traditional stability

analysis. It is very useful[4,9—11 to discuss the solutions of these

In Sec. Il we present a brief review of the stationary so-equations of motion in terms of expansionsNmoles whose
lutions of front propagation in channel geometries. In Sec. Illposition z;(t)=x;(t) +iy;(t) in the complex plane is time
we present the results of traditional linear stability analysisdependent:
and show the eigenvalues and eigenfunctions that we want to
interpret by using the pole decomposition. Section IV pre- 0—z;(t)
sents the analysis in terms of complex singularities, in two u(e,t)= ”Z co} —5—| +c.c.
steps as discussed above. A summary and discussion is pre-
sented in Sec. V.

_ V% 2sir 6—x;(t)] -

Il. ELAME PROPAGATION IN CHANNEL GEOMETRY j=1 cosliy;(t)]—cog 6—x;(t)]

We consider a two-dimensional channel of transversé&ubstituting Eq.(5) into Eq. (4), we derive the following
width L and of infinite extent in the longitudinal direction. A ordinary differential equations for the positions of the poles:
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,dx; N dy, 2N+1 1 10

—-L E:szlz,k#:j Sin(X; — %) TR S (10
X {[coshy;—yy) —cogX; —x)]7 ! The fate of this pole depends on the number of other poles. If

1 N is too large the pole will run to infinity, whereas i is
+[coshy;+yi) —cosx;—xJ)]"7}, () gmall the pole will be attracted towards the real axis. The

N _ condition for moving away to infinity is thalN>N(L),

LZ%— sinh(y; —Yy) whereN(L) is given by Eq.(9). On the other hand, thg
dt Vk=l,k#i coshly; —Yi) — COX; — Xy) coordinate of the poles cannot hit zero. Zero is a repulsive

line and poles are pushed away from zero with infinite ve-
locity. To see this consider a pole whogeapproaches zero.
For any finite L the term cothy;) grows unboundedly,
whereas all the other terms in Eg) remain bounded.

() (v) The height of the cusp is proportional ko The dis-
tribution of positions of the poles along the line of constant
was worked out if4].

sinh(y; +Y,)
coshy; +Yi) — cogX; —X)

+v cothy;)—L.

In particular we can find the steady-state solutia(i) by

demandingx;=y;=0 and stability. The solution is
We will refer to the solution with all these properties as the
2siq 6—xq] Thual-Frisch-HenorTFH) cusp solution.

VJ-=1 coshy;]—cog 6—xs] ' ®

N
us(0)=

Ill. LINEAR STABILITY ANALYSIS IN CHANNEL
where X is the real(common position of the stationary GEOMETRY

poles andy; their stationary imaginary position. We need to . . .
determine ]the actual positiolys. This is done numerically The standard technique to study the linear stability of the

by running the equations of motion for the poles startings'teady solution is to perturb It by ?‘_Sma” perturbgtlon
from N poles in initial positions and waiting for relaxation. A $(0.1): u(6.t)= US( 0) + ¢(9’t)', Llnearlzmg the dynamics
complete analysis of this steady-state solution was presentd@ Small ¢ results in the equation of motion

in Ref.[4] and the main results are summarized as follows.

ap(e,t) 1 5
(i) There is only one stable stationary solution that is geo- Gt - L2 0dus(0)$(0.0)]+vayh(6.0)}
metrically represented by a giant cu&p, equivalently, one
fingen and analytically byN(L) poles that are aligned on n EI(¢(0 1) (11)
one line parallel to the imaginary axis. The existence of this L e

solution is made clearer with the following remarks.

(i) There exists an attraction between the poles along theshere the linear operator containg(d) as a coefficient.
real line. This is obvious from Ed6), in which the sign of Accordingly, simple Fourier modes do not diagonalize it.
dx;/dt is always determined by six(-xJ). The resulting Nevertheless, we proceed to decompasx) in Fourier
dynamics merges all the positions of poles whosg posi- modes according to
tion remains finite.

(i) They positions are distinct and the poles are aligned “ Ko
above each other in positiogs_;<y;<y;.; with the maxi- ¢(9,t)=k;w d(1) e, (12)
mum beingyy,. This can be understood from E(), in
which the interaction is seen to be repulsive at short ranges, w N
but changes sign at longer ranges. U 0)= — 2 i san(k)e~ Kyjeike 13
(iv) If one adds an additional pole to such a solution, this s(9) g k;oo 121 gn(k) ' 13

pole (or anothey will be pushed to infinity along the imagi-
nary axis. If the system has less thhilL) poles it is un- Equation(13) follows from Eq.(8) by expanding in a series
stable to the addition of poles and any noise will drive theof sinké. In these sums the discrdteralues run over all the

system towards this unique state. The nuniél) is integers. Substituting in Eq11) we get
1L de(t .
NL=\3 —+1) - © MU adat) | (14
2 14 dt n

where the term in square brackets is the integer part. To S&gherea, , are entries of an infinite matrix

this consider a system withl poles and such that all the

values ofy; satisfy the condition € y; <y,ax. Add now one k| v )

additional pole whose coordinates are=(x,,y,) With y, a= 2K (15
>Ymax- From the equation of motion far, [Eq.(7)] we see

that the terms in the sum are all of the order of unity as is N

also the coty,) term. Thus the equation of motion gf, is a =£sgn(k—n)( 2v2 e|knyj) k#n. (16)
approximately kL2 =1 ’ '
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has k* entries and we can compute the eigenfunctions

() i i
FIG. 1. Plot of the first five eigenvalues obtained by diagonal-f (9) of the linear operatof11), using Eq.(12), as

izing the matrix obtained by traditional stability analysis, against K
the system size. The elgen\_/alugs are normalized®y. The larg- f</>( 6)= 2 RIYNG
est eigenvalue is zero, which is a Goldstone mode. All the other k
eigenvalues are negative except for the second and third, which

touch zero periodically. The second and fourth eigenvalues are rerI‘Equation(ll) does not mix even with odd solutions i as
resented by a solid line and the third and fifth eigenvalues are rep-

. can be checked by inspection. Consequently the available

resented by a dot-dashed line. . . L
solutions have even or odd parity, expandable in either cos or

To solve for the eigenvalues of this matrix we need to trunSin functions. The first two nontrivial eigenfunctions
cate it at some cutofk vector k*. The scalek* can be f*)(68) andf(®)(6) are shown in Figs. 2 and 3. It is evident
chosen on the basis of E€L5), from which we see that the that the function in Fig. 2 is odd around zero, whereas in Fig.
largest value ok for which a, =0 is a scale that we denote 3 it is even. Similarly, we can numerically generate any other
askmay, Which is the integer part df/v. We must choose eigenfunction of the linear operator, but we understand nei-
k* >k and test the choice by the convergence of the either the physical significance of these eigenfunction nor the
genvalues. The chosen value kf in our numerics was L dependence of their associated eigenvalues shown in Fig.
4kmax- One should notice that this cutoff limits the number 1. In the next section we will demonstrate how the dynamical
of eigenvalues, which should be infinite. However, the lowersystem approach in terms of singularities in the complex
eigenvalues will be well represented. The results for the lowPlane provides us with considerable intuition about these is-
order eigenvalues of the matréy, that were obtained from SU€S.
the converged numerical calculation are presented in Fig. 1.

(17)

,k*

The eigenvalues are multiplied /v and are plotted as IV. LINEAR STABILITY IN TERMS OF COMPLEX
a function ofL. We order the eigenvalues in decreasing order SINGULARITIES
and denote them aky=\;=\,---. The figure offers a

Since the partial differential equation is continuous there
is an infinite number of modes. To understand this in terms

(i) There exists an obvious Goldstone or translationabf pole dynamics we consider the problem in two steps.
modeug(6) with eigenvaluex,=0. This eigenmode stems First, we consider the!2(L) modes associated with the dy-
from the Galilean invariance of the equation of motion. namics of theN(L) poles of the giant cusp. In the second

(if) The eigenvalues oscillate periodically between valuesstep we explain that all the additional modes result from the
that arel independent in this presentatiGn which we mul-

number of qualitative observations .

tiply by L?). In other words, up to the oscillatory behavior 6.0
the eigenvalues depend anlike L2,
(iii) The eigenvaluea, andX, hit zero periodically. The a0l

functional dependence in this presentation appears almo:
piecewise linear. @

(iv) The higher eigenvalues are more negative. They ex-f(e) 20
hibit similar qualitative behavior, but without reaching zero.
We note that the solution becomes marginally stable for ev- 00

. . ! g Wity [ | e Wiy | [ g
ery value ofL for which the eigenvalues, andX, hit zero. / 4 ! A
TheL ~2 dependence of the spectrum indicates that the solu e
tion becomes more and more sensitive to noisk iasreases “oo so 100 180 200

[12].

In addition to the eigenvalues, the truncated matrix also FIG. 3. First even eigenfunction obtained from traditional sta-
yields eigenvectors that we denoteAt§). Each such vector bility analysis.
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N(L) poles of the giant cusp to the new poles. After these

two steps we will be able to identify all the linear modes that

were found by diagonalizing the stability matrix in the pre- 00 \ \ y \ N \ y
ceding section. ! \ N NN Y
v \ N A ) \
> 20l \ \ \ \ \\ N
A. Modes associated with the giant cusp N: \\\ \~\‘ _‘ \‘\\ L 5 k
In the steady solution all the poles occupy stable equibi- << ol L EA T L U RS
rilium positions. The forces operating on any given pole can- ‘ i L
cel exactly and we can write matrix equations for small per- [ [T ISR AR
turbations in the pole positionsy; and 8x; . 0l TR T T R
Following [4], we rewrite the equations of motiofY)
using the Lyapunov functiok) AT N
. 9U 300 20 io 4 0 80 100
Lyi= v, (18 L
i
FIG. 4. Eigenvalues associated with perturbing the positions of
wherei=1 N and the poles that consist in the giant cusp. The largest eigenvalue is
2 Insinhy; + 22

tively

by a solid line, dot-dashed line, dotted line, and dashed line, respec-
In S|nh—y+ln smhu” :

zero. The second, third, fourth, and fifth eigenvalues are represented

—Ei Yi-

FU v 1/2 1/2 23
(19) ayidyk L{ . (Y o[ YktYil |
sint? sink?
2 2
The linearized equations of motion foy; are v 1 1
Vig== + 24
_ 20U - L(cosf(y. yo—1 cosf(yi+yk)—l) 24
Loyi= 39y N - 20 and fori=k
PU _ " 1 1
The matrixg?U/dy;dyy is real and symmetric of rank. We _r 2 +
thus expect to findN real eigenvalues antll orthogonal r7y, L| k=i 5 h’- —VYi osint YY1 Yt Yi
eigenvectors. sin 2 sin T
For the deviations5x; in the x positions we find the lin-
earized equations of motion 1
+—], (25
\ sinff(y;)
Lox=—— 8% >
L k=Tk#] N
1 1 Vi=2 | - - + - ”
x( + E coshy. Y —1 coshyj+y)—1
coshyj—yw)—1  coshyj+y)—1 (26)
N
+_ 2 Sx 1 Using the known steady-state solutionsat any givernL we
Lk=Tk+] K coshly;—y ) —1 can diagonalize thél(L) X N(L) matrices numerically. In
Fig. 4 we present the eigenvalues of the lowest-order modes
1 21) obtained from this procedure. The least negative eigenvalues
coshyj+y—1 touch zero periodically. This eigenvalue can be fully identi-
fied with the motion of the highest polg, in the giant
or in shorthand cusp. At isolated values df the position of this pole tends to
infinity and then the row and the column in our matrices that
déx;
LT:Vik&(k . (22)

containyyy vanish identically, leading to a zero eigenvalue.
The rest of the upper eigenvalues match perfectly with half
of the observed eigenvalues in Fig. 1. In other words, the
eigenvalues observed here agree perfectly with the ones plot-
The matrix V is also real and symmetric. Thug and ted in this Fig. 1 until the discontinuous increase from their
9°Ulay;dy, together supply R(L) real eigenvalues and minimal points. The “second half” of the oscillation in the
2N(L) orthogonal eigenvectors. The explicit form of the ma- eigenvalues as a function &fis not contained in this spec-
tricesV and 9°U/dy;dyy is as follows: Fori #k

trum of theN(L) poles of the giant cusp. To understand the
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FIG. 5. First odd eigenfunction associated with perturbing the

o ! : FIG. 6. First even eigenfunction associated with perturbing the
positions of the poles in the giant cusp.

positions of the poles in the giant cusp.

rest of the spectrum we need to consider a perturbation of the, .y equidistant real positiod;=xo+ (2m/M)jHL,.

giant cusp by add_ltlonal poles. . orxo=0 we use Eq(5) and the Fourier expansion tc; obtain
The eigenfunctions can be found using the knowledge og erturbation of the form

the eigenvectors of these matrices. Let us denote the eigen—p

vectors of3?U/dy;dy, andV asa”) andb\), respectively. Su(6,t)=4vMeMYpUsinM 6. (31)

The perturbed solution is explicitly given &®r x;=0)

N For xo= — 7/2M we get

B E sin( 60— 8%;)
UslO)F OU=2V 2, Cochy,+ oy, —cod 9—ax) " 2 su(6,t)=4vMeMrUcosM 6. (32
where su is In both cases the equations for the dynamicspffollow
from Egs.(6) and(7):
N o
Su=—4 ke Misin ko d
v2 2 % Do 5 ” aM) | (33
dt L
N 0
—4p> > sx;ke Wicoské. (28)  wherea(M) is given as
=
. | , p _ 1L 1L
So knowing the eigenvectos$”) andb(”), we can estimate a(M)=|5| —+1]|=5{——M]. (34)

the eigenvector$!)(6) of Eq. (17):
Since Eq(393) is linear, we can solve it and substitute in Egs.

f90)=—-4v> > ake Wisinks, j=1,...N (31) and (32). Seeking a formsu(6,t)~exd —\(M)t], we
i=1 k=1 find that the eigenvalug(M) is
(29)
14
or )\(M)=2Mpa(M). (35
N 0
fgg;( 0)= —41»2 2 bi(/)ke‘kyicoska, ji=1,... N These e_:igen_values are _plotted in Fig. 7 _
i=1k=1 At this point we consider the dynamics of the poles in the

(30)  giant cusp under the influence of the additiomlpoles.

. . . From Egs.(20), (22), (6), and (7) we obtain, after some
where we display separately the sin expansion and the cQsyvious algebra

expansion. For the casé=1, the eigenvalue is zero and a
uniform translation of the poles in any amousy; results in J?U v

a Goldstone mode. This is characterized by an eigenvector ~ Ldy;=2, oy YiTAT Me M%Usinh(My;) (36)
b¥=1 for all i. The eigenvector§”) (Figs. 5 and com- et
puted this way are identical to numerical precision with thosg,,
shown in Figs. 2 and 3 and observe the agreement.
. 14
B. Modes related to additional poles Lox= 2 Vij 0X; _4EMefMyP(t)COSKMyi)- (37)

In this subsection we identify the rest of the modes that
were not found in the preceding subsection. To this aim wdt is convenient now to transform from the bagig; to the
study the response of the TFH solution to the introduction ohatural basisv;, which is obtained using the linear transfor-
additional poles. We choose to atiti new poles, all posi- mationw=A"18y. Here the matrixA has columns that are
tioned at the same imaginary coordingte<y,,y, distrib-  the eigenvectors O&ZU/ayiayj that were computed before.



2592

2.0 T

J 7// |

_80 I I 1 I
0.0 2.0 4.0 L 6.0 8.0 10.0

ALy

FIG. 7. Spectrum of eigenvalues associated with the reaction of

the poles in the giant cusp to the addition of new poles.

Since the matrix was real symmetric, the matAxis or-
thogonal andA~*=AT. DefineC=4(v/L?)Me M¥p(® and
write

Wi=—)\iwi—Ce_)‘(M)t§i y (38)
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An identical calculation to the one started with E§8) can
be followed for the deviationsx;. The final result reads

f(M)(0)=4Cv’\§) i > coshMy, > AinAim_
cos == . 14 Nm—A(M)

X ke Wicosk§+ L2CcosM 6 (44)

whereA is the matrix whose columns are the eigenvectors of

V and -\, its eigenvalue.

We are now in position to explain the entire linear spec-
trum using the knowledge that we have gained. The spec-
trum consists of two separate types of contributions. The first
type has N modes that belong to the dynamics of the un-
perturbedN(L) poles in the giant cusp. The second part,
hich is most of the spectrum, is built from modes of the
second type sinc®l can go to infinity. This structure is seen
in Figs. 4 and 7.

We can argue that the set of eigenfunctions obtained
above is complete and exhaustive. To do this we show that
any arbitrary periodic function of can be expanded in terms
of these eigenfunctions. Start with the standard Fourier series
in terms of sin and cos functions. At this point solve for
sinkd and coké from Egs. (43) and (44). Substitute the

where—\; are the eigenvalues associated with the columngesults in the Fourier sums. We now have an expansion in

of A and

&=, AjsinhMy; . (39
]

Since we are looking for an eigenvectuas, is expected to
decay exponentially with a rate(M):
w;(t)=w;(0)e *ML, (40)

Substituting the desired solution in E@8), we find a con-
dition on the initial value ofw; :

w;(0)=— m& : (41
Transforming back tady;, we get
5yi(0)=2k Aiwi(0)
S A= Aysinh
T4 Aik)\k_)\(M) : AisinhMy;,
AiA
:_C§|: sinhMy,Z N 'E ”;A. (42

k K P

terms of the eigenmodd$§") and in terms of the triple sums.
The triple sums, however, can be expanded, using €.
and (30), in terms of the eigenfunction&”). We can thus
decompose any function in terms of the eigenfunctitf{s
and f().

V. CONCLUSIONS

We discussed the stability of flame fronts in channel ge-
ometry using the representation of the solutions in terms of
singularities in the complex plane. In this language the sta-
tionary solution, which is a giant cusp in configuration space,
is represented bN(L) poles that are organized on a line
parallel to the imaginary axis. We showed that the stability
problem can be understood in terms of two types of pertur-
bations. The first type is a perturbation in the positions of the
poles that make up the giant cusp. The longitudinal motions
of the poles give rise to odd modes, whereas the transverse
motions give rise to even modes. The eigenvalues associated
with these modes are eigenvalues of finite, real, and symmet-
ric matrices; cf. Eqs(23)—(26). The second type of pertur-
bations is obtained by adding poles to the selN¢E) poles
representing the giant cusp. The reaction of the latter poles is
again separated into odd and even functions, as can be seen
from Eqgs.(31) and(32). Together the two types of perturba-
tions rationalize and explain all the features of the eigenval-
ues and eigenfunctions obtained from the standard linear sta-

We can get the eigenfunctions of the linear operator, a$ility analysis.

before, using Eqs28), (31), (32), and(42). We get
f<.M>(o)=4cV'§) % > sinhMy, > _AimAim_
sin i=1 k=1 \ T 14 Am—A(M)

x ke Wisink#+ L2CsinM 6. (43
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