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Stability analysis of flame fronts: Dynamical systems approach in the complex plane

Oleg Kupervasser, Zeev Olami, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 20 August 1998!

We consider flame front propagation in channel geometries. The steady-state solution in this problem is
space dependent and therefore the linear stability analysis is described by a partial integro-differential equation
with a space-dependent coefficient. Accordingly, it involves complicated eigenfunctions. We show that the
analysis can be performed using a finite-order dynamical system in terms of the dynamics of singularities in the
complex plane, yielding a detailed understanding of the physics of the eigenfunctions and eigenvalues.
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I. INTRODUCTION

In this paper we discuss the stability of steady fla
fronts in channel geometry. Traditionally@1–3# one studies
stability by considering the linear operator that is obtained
linearizing the equations of motion around the steady so
tion. The eigenfunctions obtained aredelocalizedand in cer-
tain cases are not easy to interpret. In the case of flame fr
the steady-state solution is space dependent and therefor
eigenfunctions are very different from simple Fourier mod
We show in this paper that a good understanding of
nature of the eigenspectrum and eigenmodes can be obta
by doing almost the opposite of traditional stability analys
i.e., studying thelocalizeddynamics of singularities in the
complex plane. By reducing the stability analysis to a stu
of a finite-dimensional dynamical system one can gain c
siderable intuitive understanding of the nature of the stab
problem.

The analysis is based on the understanding that fo
given channel widthL the steady-state solution for the flam
front is given in terms ofN(L) poles that are organized on
line parallel to the imaginary axis@4#. The stability of this
solution can then be considered in two steps. In the first s
we examine the response of this set ofN(L) poles to pertur-
bations in their positions. This procedure yields an import
part of the stability spectrum. In the second step we exam
general perturbations, which can also be described by
addition of extra poles to the system ofN(L) poles. The
response to these perturbations gives us the rest of the
bility spectrum; the combinations of these two steps ration
izes all the qualitative features found by traditional stabil
analysis.

In Sec. II we present a brief review of the stationary s
lutions of front propagation in channel geometries. In Sec.
we present the results of traditional linear stability analy
and show the eigenvalues and eigenfunctions that we wa
interpret by using the pole decomposition. Section IV p
sents the analysis in terms of complex singularities, in t
steps as discussed above. A summary and discussion is
sented in Sec. V.

II. FLAME PROPAGATION IN CHANNEL GEOMETRY

We consider a two-dimensional channel of transve
width L and of infinite extent in the longitudinal direction. A
PRE 591063-651X/99/59~3!/2587~7!/$15.00
e

y
-

ts
the
.
e
ed
,

y
-

y

a

p

t
e

he

ta-
l-

-
II
s
to
-
o
re-

e

graph of a flame front propagating in this channel is defin
ash(x,t) with 0,x,L. A model that pertains to the propa
gation of this flame front was proposed in@5#. After appro-
priate rescalings it takes the form

]h~x,t !

]t
5

1

2F]h~x,t !

]x G2

1n
]2h~x,t !

]x2 1I $h~x,t !%11, ~1!

wheren is a parameter. The functionalI @h(x,t)# is the Hil-
bert transform that is conveniently defined in terms of t
spatial Fourier transform

h~x,t !5E
2`

`

eikxĥ~k,t !dk, ~2!

I @h~k,t !#5ukuĥ~k,t !. ~3!

This functional represents the Darrius-Landau instability a
is the phsyical instability term. The first term in Eq.~1! has a
geometric origin and it stems from a small tilt in the flam
front with respect to the direction of propagation. The seco
term is the dissipative contribution that acts to reduce h
wrinkling in the flame front. Rescaling further according
x→u52px/L, the new equation of motion forh(u,t) is
rewritten conveniently in terms ofu(u,t)[]h(u,t)/]u
@5–8#:

]u~u,t !

]t
5

u~u,t !

L2

]u~u,t !

]u
1

n

L2

]2u~u,t !

]u2 1
1

L
I $u~u,t !%.

~4!

It is very useful@4,9–11# to discuss the solutions of thes
equations of motion in terms of expansions inN poles whose
position zj (t)[xj (t)1 iy j (t) in the complex plane is time
dependent:

u~u,t !5n(
j 51

N

cotFu2zj~ t !

2 G1c.c.

5n(
j 51

N
2sin@u2xj~ t !#

cosh@yj~ t !#2cos@u2xj~ t !#
, ~5!

Substituting Eq.~5! into Eq. ~4!, we derive the following
ordinary differential equations for the positions of the pole
2587 ©1999 The American Physical Society
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2L2
dxj

dt
5n (

k51,kÞ j

N

sin~xj2xk!

3$@cosh~yj2yk!2cos~xj2xk!#
21

1@cosh~yj1yk!2cos~xj2xk!#
21%, ~6!

L2
dyj

dt
5n (

k51,kÞ j

N S sinh~yj2yk!

cosh~yj2yk!2cos~xj2xk!

1
sinh~yj1yk!

cosh~yj1yk!2cos~xj2xk!
D1n coth~yj !2L.

~7!

In particular we can find the steady-state solutionus(u) by
demandingẋ j5 ẏ j50 and stability. The solution is

us~u!5n(
j 51

N
2sin@u2xs#

cosh@yj #2cos@u2xs#
, ~8!

where xs is the real ~common! position of the stationary
poles andyj their stationary imaginary position. We need
determine the actual positionsyj . This is done numerically
by running the equations of motion for the poles start
from N poles in initial positions and waiting for relaxation.
complete analysis of this steady-state solution was prese
in Ref. @4# and the main results are summarized as follow

~i! There is only one stable stationary solution that is g
metrically represented by a giant cusp~or, equivalently, one
finger! and analytically byN(L) poles that are aligned o
one line parallel to the imaginary axis. The existence of t
solution is made clearer with the following remarks.

~ii ! There exists an attraction between the poles along
real line. This is obvious from Eq.~6!, in which the sign of
dxj /dt is always determined by sin(xj2xk). The resulting
dynamics merges all thex positions of poles whosey posi-
tion remains finite.

~iii ! The y positions are distinct and the poles are align
above each other in positionsyj 21,yj,yj 11 with the maxi-
mum beingyN(L) . This can be understood from Eq.~7!, in
which the interaction is seen to be repulsive at short ran
but changes sign at longer ranges.

~iv! If one adds an additional pole to such a solution, t
pole ~or another! will be pushed to infinity along the imagi
nary axis. If the system has less thanN(L) poles it is un-
stable to the addition of poles and any noise will drive t
system towards this unique state. The numberN(L) is

N~L !5F1

2S L

n
11D G , ~9!

where the term in square brackets is the integer part. To
this consider a system withN poles and such that all th
values ofyj satisfy the condition 0,yj,ymax. Add now one
additional pole whose coordinates areza[(xa ,ya) with ya
@ymax. From the equation of motion forya @Eq. ~7!# we see
that the terms in the sum are all of the order of unity as
also the cot(ya) term. Thus the equation of motion ofya is
approximately
ed
.

-

s

e

d

s,

s

ee

s

dya

dt
'n

2N11

L2 2
1

L
. ~10!

The fate of this pole depends on the number of other pole
N is too large the pole will run to infinity, whereas ifN is
small the pole will be attracted towards the real axis. T
condition for moving away to infinity is thatN.N(L),
whereN(L) is given by Eq.~9!. On the other hand, they
coordinate of the poles cannot hit zero. Zero is a repuls
line and poles are pushed away from zero with infinite v
locity. To see this consider a pole whoseyj approaches zero
For any finite L the term coth(yj) grows unboundedly,
whereas all the other terms in Eq.~7! remain bounded.

~v! The height of the cusp is proportional toL. The dis-
tribution of positions of the poles along the line of constanx
was worked out in@4#.

We will refer to the solution with all these properties as t
Thual-Frisch-Henon~TFH! cusp solution.

III. LINEAR STABILITY ANALYSIS IN CHANNEL
GEOMETRY

The standard technique to study the linear stability of
steady solution is to perturb it by a small perturbati
f(u,t): u(u,t)5us(u)1f(u,t). Linearizing the dynamics
for small f results in the equation of motion

]f~u,t !

]t
5

1

L2$]u@us~u!f~u,t !#1n]u
2f~u,t !%

1
1

L
I „f~u,t !…, ~11!

where the linear operator containsus(u) as a coefficient.
Accordingly, simple Fourier modes do not diagonalize
Nevertheless, we proceed to decomposef(x) in Fourier
modes according to

f~u,t !5 (
k52`

`

f̂k~ t !eiku, ~12!

us~u!522n i (
k52`

`

(
j 51

N

sgn~k!e2ukuyjeiku. ~13!

Equation~13! follows from Eq.~8! by expanding in a series
of sinku. In these sums the discretek values run over all the
integers. Substituting in Eq.~11! we get

df̂k~ t !

dt
5(

n
aknf̂n~ t ! , ~14!

whereakn are entries of an infinite matrix

akk5
uku
L

2
n

L2 k2 , ~15!

akn5
k

L2sgn~k2n!S 2n(
j 51

N

e2uk2nuyj D , kÞn. ~16!
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To solve for the eigenvalues of this matrix we need to tru
cate it at some cutoffk vector k* . The scalek* can be
chosen on the basis of Eq.~15!, from which we see that the
largest value ofk for which akk>0 is a scale that we denot
askmax, which is the integer part ofL/n. We must choose
k* .kmax and test the choice by the convergence of the
genvalues. The chosen value ofk* in our numerics was
4kmax. One should notice that this cutoff limits the numb
of eigenvalues, which should be infinite. However, the low
eigenvalues will be well represented. The results for the lo
order eigenvalues of the matrixakn that were obtained from
the converged numerical calculation are presented in Fig

The eigenvalues are multiplied byL2/n and are plotted as
a function ofL. We order the eigenvalues in decreasing or
and denote them asl0>l1>l2•••. The figure offers a
number of qualitative observations .

~i! There exists an obvious Goldstone or translatio
modeus8(u) with eigenvaluel050. This eigenmode stem
from the Galilean invariance of the equation of motion.

~ii ! The eigenvalues oscillate periodically between valu
that areL independent in this presentation~in which we mul-
tiply by L2). In other words, up to the oscillatory behavi
the eigenvalues depend onL like L22.

~iii ! The eigenvaluesl1 andl2 hit zero periodically. The
functional dependence in this presentation appears alm
piecewise linear.

~iv! The higher eigenvalues are more negative. They
hibit similar qualitative behavior, but without reaching zer
We note that the solution becomes marginally stable for
ery value ofL for which the eigenvaluesl1 andl2 hit zero.
TheL22 dependence of the spectrum indicates that the s
tion becomes more and more sensitive to noise asL increases
@12#.

In addition to the eigenvalues, the truncated matrix a
yields eigenvectors that we denote asA(l ). Each such vector

FIG. 1. Plot of the first five eigenvalues obtained by diagon
izing the matrix obtained by traditional stability analysis, agai
the system size. The eigenvalues are normalized byL2/n. The larg-
est eigenvalue is zero, which is a Goldstone mode. All the o
eigenvalues are negative except for the second and third, w
touch zero periodically. The second and fourth eigenvalues are
resented by a solid line and the third and fifth eigenvalues are
resented by a dot-dashed line.
-
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has k* entries and we can compute the eigenfunctio
f (l )(u) of the linear operator~11!, using Eq.~12!, as

f ~ l !~u![ (
2k*

k*

eikuAk
~ l ! . ~17!

Equation~11! does not mix even with odd solutions inu, as
can be checked by inspection. Consequently the availa
solutions have even or odd parity, expandable in either co
sin functions. The first two nontrivial eigenfunction
f (1)(u) and f (2)(u) are shown in Figs. 2 and 3. It is eviden
that the function in Fig. 2 is odd around zero, whereas in F
3 it is even. Similarly, we can numerically generate any ot
eigenfunction of the linear operator, but we understand n
ther the physical significance of these eigenfunction nor
L dependence of their associated eigenvalues shown in
1. In the next section we will demonstrate how the dynami
system approach in terms of singularities in the comp
plane provides us with considerable intuition about these
sues.

IV. LINEAR STABILITY IN TERMS OF COMPLEX
SINGULARITIES

Since the partial differential equation is continuous the
is an infinite number of modes. To understand this in ter
of pole dynamics we consider the problem in two ste
First, we consider the 2N(L) modes associated with the dy
namics of theN(L) poles of the giant cusp. In the secon
step we explain that all the additional modes result from

-
t

r
ch
p-
p-

FIG. 2. First odd eigenfunction obtained from traditional stab
ity analysis.

FIG. 3. First even eigenfunction obtained from traditional s
bility analysis.
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introduction of additional poles, including the reaction of t
N(L) poles of the giant cusp to the new poles. After the
two steps we will be able to identify all the linear modes th
were found by diagonalizing the stability matrix in the pr
ceding section.

A. Modes associated with the giant cusp

In the steady solution all the poles occupy stable equ
rilium positions. The forces operating on any given pole c
cel exactly and we can write matrix equations for small p
turbations in the pole positionsdyi anddxi .

Following @4#, we rewrite the equations of motion~7!
using the Lyapunov functionU:

Lẏi5
]U

]yi
, ~18!

wherei 51, . . . ,N and

U5
n

LF(
i

ln sinhyi12(
i ,k

S ln sinh
yk2yi

2
1 ln sinh

yk1yi

2 D G
2(

i
yi . ~19!

The linearized equations of motion fordyi are

Ld ẏi5(
k

]2U

]yi]yk
dyk . ~20!

The matrix]2U/]yi]yk is real and symmetric of rankN. We
thus expect to findN real eigenvalues andN orthogonal
eigenvectors.

For the deviationsdxi in the x positions we find the lin-
earized equations of motion

Ld ẋ j52
n

L
dxj (

k51,kÞ j

N

3S 1

cosh~yj2yk!21
1

1

cosh~yj1yk!21D
1

n

L (
k51,kÞ j

N

dxkS 1

cosh~yj2yk!21

1
1

cosh~yj1yk!21D ~21!

or in shorthand

L
ddxi

dt
5Vikdxk . ~22!

The matrix V is also real and symmetric. ThusV and
]2U/]yi]yk together supply 2N(L) real eigenvalues and
2N(L) orthogonal eigenvectors. The explicit form of the m
tricesV and]2U/]yi]yk is as follows: ForiÞk
e
t

i-
-
-

-

]2U

]yi]yk
5

n

LS 1/2

sinh2S yk2yi

2 D 2
1/2

sinh2S yk1yi

2 D D , ~23!

Vik5
n

LS 1

cosh~yi2yk!21
1

1

cosh~yi1yk!21D ~24!

and for i 5k

]2U

]yi
2 52

n

LF(
kÞ i

N S 1

2sinh2S yk2yi

2 D 1
1

2sinh2S yk1yi

2 D D
1

1

sinh2~yi !G , ~25!

Vii 5(
kÞ i

N F2
n

LS 1

cosh~yi2yk!21
1

1

cosh~yi1yk!21D G .
~26!

Using the known steady-state solutionsyi at any givenL we
can diagonalize theN(L)3N(L) matrices numerically. In
Fig. 4 we present the eigenvalues of the lowest-order mo
obtained from this procedure. The least negative eigenva
touch zero periodically. This eigenvalue can be fully iden
fied with the motion of the highest poleyN(L) in the giant
cusp. At isolated values ofL the position of this pole tends to
infinity and then the row and the column in our matrices th
containyN(L) vanish identically, leading to a zero eigenvalu
The rest of the upper eigenvalues match perfectly with h
of the observed eigenvalues in Fig. 1. In other words,
eigenvalues observed here agree perfectly with the ones
ted in this Fig. 1 until the discontinuous increase from th
minimal points. The ‘‘second half’’ of the oscillation in th
eigenvalues as a function ofL is not contained in this spec
trum of theN(L) poles of the giant cusp. To understand t

FIG. 4. Eigenvalues associated with perturbing the positions
the poles that consist in the giant cusp. The largest eigenvalu
zero. The second, third, fourth, and fifth eigenvalues are represe
by a solid line, dot-dashed line, dotted line, and dashed line, res
tively.
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rest of the spectrum we need to consider a perturbation o
giant cusp by additional poles.

The eigenfunctions can be found using the knowledge
the eigenvectors of these matrices. Let us denote the ei
vectors of]2U/]yi]yk andV asa(l ) andb(l ), respectively.
The perturbed solution is explicitly given as~for xs50)

us~u!1du52n(
i 51

N
sin~u2dxi !

cosh~yi1dyi !2cos~u2dxi !
, ~27!

wheredu is

du524n(
i 51

N

(
k51

`

dyike2kyisin ku

24n(
i 51

N

(
k51

`

dxike2kyicosku. ~28!

So knowing the eigenvectorsa(l ) andb(l ), we can estimate
the eigenvectorsf (l )(u) of Eq. ~17!:

f sin
~ l !~u!524n(

i 51

N

(
k51

`

ai
~ l !ke2kyisinku, j 51, . . . ,N

~29!

or

f cos
~ l !~u!524n(

i 51

N

(
k51

`

bi
~ l !ke2kyicosku, j 51, . . . ,N

~30!

where we display separately the sin expansion and the
expansion. For the casel 51, the eigenvalue is zero and
uniform translation of the poles in any amountdxi results in
a Goldstone mode. This is characterized by an eigenve
bi

(1)51 for all i. The eigenvectorsf (l ) ~Figs. 5 and 6! com-
puted this way are identical to numerical precision with tho
shown in Figs. 2 and 3 and observe the agreement.

B. Modes related to additional poles

In this subsection we identify the rest of the modes t
were not found in the preceding subsection. To this aim
study the response of the TFH solution to the introduction
additional poles. We choose to addM new poles, all posi-
tioned at the same imaginary coordinateyp!ymax, distrib-

FIG. 5. First odd eigenfunction associated with perturbing
positions of the poles in the giant cusp.
he

f
n-

os

or

e

t
e
f

uted at equidistant real positions$xj5x01(2p/M ) j % j 51
M .

For x050 we use Eq.~5! and the Fourier expansion to obta
a perturbation of the form

du~u,t !.4nMe2Myp~ t !sinMu. ~31!

For x052p/2M we get

du~u,t !.4nMe2Myp~ t !cosMu. ~32!

In both cases the equations for the dynamics ofyp follow
from Eqs.~6! and ~7!:

dyp

dt
.2

n

L2 a~M ! , ~33!

wherea(M ) is given as

a~M !5F1

2S L

n
11D G2

1

2S L

n
2M D . ~34!

Since Eq.~33! is linear, we can solve it and substitute in Eq
~31! and ~32!. Seeking a formdu(u,t);exp@2l(M)t#, we
find that the eigenvaluel(M ) is

l~M !52M
n

L2 a~M !. ~35!

These eigenvalues are plotted in Fig. 7.
At this point we consider the dynamics of the poles in t

giant cusp under the influence of the additionalM poles.
From Eqs.~20!, ~22!, ~6!, and ~7! we obtain, after some
obvious algebra,

Ld ẏi5(
j

]2U

]yi]yj
dyj24

n

L
Me2Myp~ t !sinh~Myi ! ~36!

or

Ld ẋi5(
j

Vi j dxj24
n

L
Me2Myp~ t !cosh~Myi !. ~37!

It is convenient now to transform from the basisdyi to the
natural basiswi , which is obtained using the linear transfo
mation w5A21dy. Here the matrixA has columns that are
the eigenvectors of]2U/]yi]yj that were computed before

e FIG. 6. First even eigenfunction associated with perturbing
positions of the poles in the giant cusp.
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Since the matrix was real symmetric, the matrixA is or-
thogonal andA215AT. DefineC54(n/L2)Me2Myp(0) and
write

ẇi52l iwi2Ce2l~M !tj i , ~38!

where2l i are the eigenvalues associated with the colum
of A and

j i5(
j

Aji sinhMyj . ~39!

Since we are looking for an eigenvector,wi is expected to
decay exponentially with a ratel(M ):

wi~ t !5wi~0!e2l~M !t. ~40!

Substituting the desired solution in Eq.~38!, we find a con-
dition on the initial value ofwi :

wi~0!52
C

l i2l~M !
j i . ~41!

Transforming back todyi , we get

dyi~0!5(
k

Aikwk~0!

52(
k

Aik

C

lk2l~M !(l
AlksinhMyl

52C(
l

sinhMyl(
k

AikAlk

lk2lp
M

. ~42!

We can get the eigenfunctions of the linear operator,
before, using Eqs.~28!, ~31!, ~32!, and~42!. We get

f sin
~M !~u!54Cn (

i 51

N~L !

(
k51

` S (
l

sinhMyl(
m

AimAlm

lm2l~M ! D
3ke2kyisinku1L2CsinMu. ~43!

FIG. 7. Spectrum of eigenvalues associated with the reactio
the poles in the giant cusp to the addition of new poles.
s

s

An identical calculation to the one started with Eq.~38! can
be followed for the deviationsdxi . The final result reads

f cos
~M !~u!54Cn (

i 51

N~L !

(
k51

` S (
l

coshMyl(
m

ÃimÃlm

l̃m2l~M !
D

3ke2kyicosku1L2CcosMu , ~44!

whereÃ is the matrix whose columns are the eigenvectors
V and2l̃ i its eigenvalue.

We are now in position to explain the entire linear spe
trum using the knowledge that we have gained. The sp
trum consists of two separate types of contributions. The fi
type has 2N modes that belong to the dynamics of the u
perturbedN(L) poles in the giant cusp. The second pa
which is most of the spectrum, is built from modes of t
second type sinceM can go to infinity. This structure is see
in Figs. 4 and 7.

We can argue that the set of eigenfunctions obtain
above is complete and exhaustive. To do this we show
any arbitrary periodic function ofu can be expanded in term
of these eigenfunctions. Start with the standard Fourier se
in terms of sin and cos functions. At this point solve f
sinku and cosku from Eqs. ~43! and ~44!. Substitute the
results in the Fourier sums. We now have an expansion
terms of the eigenmodesf (M ) and in terms of the triple sums
The triple sums, however, can be expanded, using Eqs.~29!
and ~30!, in terms of the eigenfunctionsf (l ). We can thus
decompose any function in terms of the eigenfunctionsf (M )

and f (l ).

V. CONCLUSIONS

We discussed the stability of flame fronts in channel g
ometry using the representation of the solutions in terms
singularities in the complex plane. In this language the s
tionary solution, which is a giant cusp in configuration spa
is represented byN(L) poles that are organized on a lin
parallel to the imaginary axis. We showed that the stabi
problem can be understood in terms of two types of per
bations. The first type is a perturbation in the positions of
poles that make up the giant cusp. The longitudinal motio
of the poles give rise to odd modes, whereas the transv
motions give rise to even modes. The eigenvalues assoc
with these modes are eigenvalues of finite, real, and symm
ric matrices; cf. Eqs.~23!–~26!. The second type of pertur
bations is obtained by adding poles to the set ofN(L) poles
representing the giant cusp. The reaction of the latter pole
again separated into odd and even functions, as can be
from Eqs.~31! and~32!. Together the two types of perturba
tions rationalize and explain all the features of the eigenv
ues and eigenfunctions obtained from the standard linear
bility analysis.
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